

Website: www.feedpool.com

Technical Data Sheet

FeedBond® EP-1600-SW1

Insulated Thermally Conductive Adhesive

Description:

FeedBond®EP-1600-SW1 is a epoxy/silicone hybrid type thermal conductive adhesive, apply for thermal management of electronic devices . It serves as an effective thermal interface material for heat sink devices where efficient cooling as well as long-term stability is required..

Application Package:

Devices which need high thermal conductivity(Power Devices,RF ICs and LEDs)

Characteristics:

- No yellowing due to heat and light
- High thermal conductivity
- Low drying during process
- Low bleed.

UNCURED PROPERTIES		TEST DESCRIPTION	TEST METHOD	
Appearance	White			
Viscosity @ 25°C	15000 cps	Brookfield DV-III/CP-51 @ 5rpm	FT-P006	
Thixotropic Index @ 25°C 1.9		Brookfield DV-III/CP-51 Visc. @ 0.5rpm/Visc. @ 5rpm	FT-P008	
Grind	<25µm	Grind meter	FT-P026	
Moisture Content	< 0.7 %	25°C/24hours	FT-P002	
Work Life @ 25°C 48hrs		25% increase in visc. @ 5rpm	FT-P024	
Shelf Life@ -40°C	6months	25% increase in visc. @ 5rpm	FT-P018	
CURE CONDITION		TEST DESCRIPTION	TEST METHOD	
Standard Cure Condition		120 minutes in oven @150°C		

Website: www.feedpool.com

FeedBond® EP-1600-SW1

PHYSIOCHEMICAL PROPERTIES	TEST DESCRIPTION	TEST METHOD	
Hardness Shore D 90±10	Durometer Shore D	FT-P037	
Glass Transition Temperature (Tg) 176°C	DMA 3 Point Bending Mode	FT-M014	
Coefficient of Thermal Expansion			
Below Tg(α1) 32 ppm/°C	TMA Expansion Mode	FT-M016	
Above Tg(α2) 68ppm/°C			
Dynamic Tensile Modulus		FT-M019A	
@25°C 6620MPa	Dynamic Mechanical Thermal Analysis		
@150°C 2934MPa	using <1.6 mm thick specimen		
@250°C 717MPa			
Thermal conductivity 1.0 W/mK	Hot Disk	FT-P022	
Dielectric constant@25°C,1MHz 3.186	Analysis vaina > 2.0 mm think	ASTM D150	
Dissipation Factor@25°C,1MHz 0.02	Analysis using >2.0 mm thick		
MECHANICAL PROPERTIES- POST CURE	TEST DESCRIPTION	TEST METHOD	
Die Shear Strength @ 25°C >120 g/die	11mil × 11mil die on Ag Leadframe	FT-M012	
Lap Shear Strength, (AL-AL, Kgf/cm ²)	1.The bonding area of Al-Al is about		
>40 (570 psi)	2.54 cm^2 .	FT-P055	
	2.the weight of adhesive is about 0.03 g.		
	3. the area of aluminum plate: (1.00 * 2.54 cm ²)		

Instruction

Thawing

Place the container to stand vertically for 60mins.**DO NOT** open the container before adhesive reaches ambient temperature to prevent the moisture condensation. Any moisture that collects on the thawed container should be removed prior to use. Adhesives that appear to have separated should not be used.

Storage

Adhesive should be stored @ -40°C. The shelf life of the material is only valid when the material has been stored at the correct storage condition.

Storage Temp.	-42°C ~-35°C	-22°C ~-18°C	0°C ~5°C	18°C ~28°C
Shelf Life	6 months	6 months	3 months	2 days

Website: www.feedpool.com

Availability

FeedBond[®] adhesives are packaged in syringes or pots per customer specification. For the details, please contact our Customer Service or sales department.

Note

This information corresponds to our current knowledge on the subject. It is offered solely to provide possible suggestions for your own experimentation. It is not intended, however, to substitute for any testing you may need to conduct and to determine the suitability of our products by yourself for your particular purposes. This information may be subject to revision as new knowledge and experience become available. Since we cannot anticipate all variations in actual end-use conditions, Feedpool makes no warranties and assumes no liability in connection with any use of this information. Nothing in this publication is to be considered as a license to operate under or a recommendation to infringe any patent right.